B. Menyelesaikan Persamaan Kuadrat

Tujuan Pembelajaran
  1. Siswa mampu menyelesaikan persamaan kuadrat dengan cara memfaktorkan.

  2. Siswa mampu menyelesaikan persamaan kuadrat dengan cara melegkapkan kuadrat sempurna.

  3. Siswa mampu menyelesaikan persamaan kuadrat dengan menggunakan rumus kuadratis.

  4. Siswa dapat menyelesaikan masalah yang berkaitan dengan persamaan kuadrat

Setelah menyelesaikan persamaan kuadrat dengan cara melengkapkan kuadrat sempurna, selanjutnya kita akan menyelesaikan persamaan kuadrat dengan menggunakan rumus kuadratis atau sering juga disebut rumus abc.


3. Menggunakan Rumus Kuadratis

      Menyelesaikan persamaan kuadrat dengan rumus kuadratis (rumus abc) biasanya dilakukan apabila kita mengalami kesulitan dalam menyelesaikan dengan cara memfaktorkan atau melengkapkan bentuk kuadrat sempurna.

      Rumus abc merupakan cara yang unggul karena dapat digunakan untuk menemukan akar-akar dari berbagai bentuk persamaan kuadrat. Dengan demikian, persamaan kuadrat ax2+bx+c=0 dapat diselesaikan menggunakan rumus kuadratis, yaitu :

x=b±b24ac2a

Huruf-huruf a, b, dan c dalam rumus abc disebut sebagai koefisen. Koefisien kuadrat x2 adalah a, koefisien x adalah b, dan c adalah koefisien konstanta.


Selesaikan akar - akar dari persamaan kuadrat x2+7x+10=0 dengan menggunakan rumus abc atau rumus kuadratis.

Jawab :

Diketahui →  koefisien x2=a

       koefisien x=b

       koefisien konstanta=c

Sehingga dapat kita ketahui bahwa a=1, b=7, dan c=10 dari persamaan x27x+10=0

      x=b±b24ac2a

                  x=(7)±72471021

                  x=(7)±49402

                  x=(7)±92

                  x=(7)±32

                  x=±2

      x=2   atau    x=2

Jadi, hasil akar - akar dari persamaan x2+7x+10=0 adalah x=2 atau x=2


      Bagaimana jika menyelesaikan persamaan kuadrat dengan rumus abc tetapi akar persamaan tersebut hanya terdapat koefisien x2 dan koefisien konstanta, seperti persamaan berikut 164x2=0.



Rumus kuadratis atau rumus abc merupakan rumus yang paling cepat dan praktis untuk menyelesaikan berbagai bentuk persamaan kuadrat. Seperti persamaan berikut yang dapat dipecahkan dengan mudah menggunakan rumus abc.

Diketahui :

Persamaan kuadrat 164x2=0, maka a=4, b=0, dan c=16

             x=b±b24ac2a

            x=(0)±(0)2(4(4)16)2(4)

            x=±256(8)

            x=±16(8)

             x=±(2)

    x=2    atau     x=2

Jadi, hasil akar - akar dari persamaan 164x2=0 adalah x=2  atau  x=2




Cara menjawab soal :
  1. Tarik angka yang telah disediakan kedalam kolom jawaban.

  2. Klik tombol "Cek Jawaban" untuk mengetahui jawaban tersebut benar atau salah .

  3. Jawaban yang benar akan tepat pada posisinya dan jawaban yang salah akan kembali ke dalam urutan angka yang telah disediakan.

  4. Klik tombol "Ulang" jika ingin mengulangi menjawab soal.

a.   Selesaikan persamaan berikut dengan menggunakan rumus kuadratis : 2x2+5x3=0



b.   Selesaikan persamaan berikut dengan menggunakan rumus kuadratis : 2x23x20=0


Agar lebih mahir dalam penggunaan rumus kuadratis atau rumus abc mari kerjakan tugas berikut.






















Nomor Soal:
1 2 3 4 5




*Klik tombol Selanjutnya di bawah ini untuk melanjutkan materi